Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories

نویسندگان

  • A. Connes
  • C. Rovelli
چکیده

We consider the cluster of problems raised by the relation between the notion of time, gravitational theory, quantum theory and thermodynamics; in particular, we address the problem of relating the ”timelessness” of the hypothetical fundamental general covariant quantum field theory with the ”evidence” of the flow of time. By using the algebraic formulation of quantum theory, we propose a unifying perspective on these problems, based on the hypothesis that in a generally covariant quantum theory the physical time-flow is not a universal property of the mechanical theory, but rather it is determined by the thermodynamical state of the system (”thermal time hypothesis”). We implement this hypothesis by using a key structural property of von Neumann algebras: the Tomita-Takesaki theorem, which allows to derive a time-flow, namely a oneparameter group of automorphisms of the observable algebra, from a generic thermal physical state. We study this time-flow, its classical limit, and we relate it to various characteristic theoretical facts, as the Unruh temperature and the Hawking radiation. We also point out the existence of a state-independent notion of ”time”, given by the canonical one-parameter subgroup of outer automorphisms provided by the Cocycle Radon-Nikodym theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

‘the Split Property for Locally Covariant Quantum Field Theories in Curved Spactime

The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument t...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

Locally Inner Automorphisms of Operator Algebras

In this paper an automorphism of a unital C-algebra is said to be locally inner if on any element it agrees with some inner automorphism. We make a fairly complete study of local innerness in von Neumann algebras, incorporating comparison with the pointwise innerness of Haagerup-Størmer. On some von Neumann algebras, including all with separable predual, a locally inner automorphism must be inn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994